Occupancy Grid Mapping in Urban Environments from a Moving On-Board Stereo-Vision System
نویسندگان
چکیده
Occupancy grid map is a popular tool for representing the surrounding environments of mobile robots/intelligent vehicles. Its applications can be dated back to the 1980s, when researchers utilized sonar or LiDAR to illustrate environments by occupancy grids. However, in the literature, research on vision-based occupancy grid mapping is scant. Furthermore, when moving in a real dynamic world, traditional occupancy grid mapping is required not only with the ability to detect occupied areas, but also with the capability to understand dynamic environments. The paper addresses this issue by presenting a stereo-vision-based framework to create a dynamic occupancy grid map, which is applied in an intelligent vehicle driving in an urban scenario. Besides representing the surroundings as occupancy grids, dynamic occupancy grid mapping could provide the motion information of the grids. The proposed framework consists of two components. The first is motion estimation for the moving vehicle itself and independent moving objects. The second is dynamic occupancy grid mapping, which is based on the estimated motion information and the dense disparity map. The main benefit of the proposed framework is the ability of mapping occupied areas and moving objects at the same time. This is very practical in real applications. The proposed method is evaluated using real data acquired by our intelligent vehicle platform "SeTCar" in urban environments.
منابع مشابه
Observing Dynamic Urban Environment through Stereo-Vision Based Dynamic Occupancy Grid Mapping
Occupancy grid maps are popular tools of representing surrounding environments for mobile robots/ intelligent vehicles. When moving in dynamic real world, traditional occupancy grid mapping is required not only to be able to detect occupied areas, but also to be able to understand the dynamic circumstance. The paper addresses this issue by presenting a stereo-vision based framework to create dy...
متن کاملOutdoor Localization Using Stereo Vision Under Various Illumination Conditions
We present a mobile robot localization method using a stereo camera only. Vision-based localization in outdoor environments is still challenging issue because of large illumination changes. To cope with varying illumination conditions, we use 2D occupancy grid maps generated from 3D point clouds obtained by a stereo camera. Furthermore, we incorporate salient line segments extracted from the gr...
متن کاملGrid Map based Free Space Estimation using Stereo Vision
This contribution proposes a temporally filtered free space estimation method for autonomous driving using dense disparity images from stereo vision. Urban environments feature complex surroundings in which the free space is limited by large and relatively flat obstacles (e.g. cars and curbs). Free space methods relying on single frame measurements suffer from sensor noise and depth artifacts, ...
متن کاملMoving Object Detection from Mobile Platforms Using Stereo Data Registration
This chapter describes a robust approach for detecting moving objects from on-board stereo vision systems. It relies on a feature point quaternion-based registration, which avoids common problems that appear when computationally expensive iterative-based algorithms are used on dynamic environments. The proposed approach consists of three main stages. Initially, feature points are extracted and ...
متن کاملLIDAR and stereo camera data fusion in mobile robot mapping
LIDAR (2D) has been widely used for mapping and navigation in mobile robotics. However, its usage is limited to simple environments. This problem can be solved by adding more sensors and processing these data together. This paper explores a method how measurements from a stereo camera and LIDAR are fused to dynamical mapping. An occupancy grid map from LIDAR data is used as prerequisite and ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2014